Practical Guide to
Database Locks with
Django

Efe Oge

d Tech Lead & Senior
Backend Developer
Jd efe.me

Table of contents

L OoOU

~30 minutes

QSA at the end

Mainly about PostgreSQL,

not sure about other databases
Examples on Django web framework

Why do we
need lock?

]
=
€
o
9
7]
[}
>
Q
>
&
=

It 1s called
“concurrency”

Event
Tickets

Event Tickets

d A platform like Ticketmaster or Songkick for selling
tickets for many events.

List and search events, get tickets.

Imagine PyCon Portugal 2023, Dua Lipa concert as events.
Online platform, multiple users.

L

Models
000

1 from django.db import models

2

3

1 class Event(models.Model):

name = models.CharField(max_length=128)
capacity_left = models.IntegerField()

N

00 N O Ui

9 class Ticket(models.Model):
10 user = models.ForeignKey("users.User")
11 event = models.ForeignKey("events.Event", related_name="tickets")

Creation of Ticket

class Ticket(models.Model):

@classmethod
def create(cls, event_1id, user_id):
event = Event.objects.get(id=event_1id)

if event.capacity_left ==
raise ValidationError("There is no space left.")

ticket = cls.objects.create(event_1id=event_id, user_id=user_id)

event.capacity_left = event.capacity_left - 1
event.save(update_fields=["capacity_left"])

ticket.send_invoice()

return ticket

LGTM

On a sunny day

>> pycon_portugal = Event.objects.get(name="PyCon Portugal 2023")
>> print(pycon_portugal.tickets.count())
201

d But the capacity was 200!

Creation of Ticket

class Ticket(models.Model):

@classmethod
def create(cls, event_1id, user_id):
event = Event.objects.get(id=event_1id)

if event.capacity_left ==
raise ValidationError("There is no space left.")

ticket = cls.objects.create(event_1id=event_1id, user_id=user_id)

event.capacity_left = event.capacity_left - 1
event.save(update_fields=["capacity_left"])

ticket.send_1invoice()

return ticket

Time-of-check
to time-of-use

On a sunny day

Race Condition!
We created an extra ticket! &

0 Maria and Pedro would like to buy PyCon Portugal ticket.
d There 1s only 1 seat left.

d We have multiple processes, app servers..

ad Process 1 checks is not capacity_left 0 W

Q Process 2 checks is not capacity left 0 W&

O Process 2 creates the a ticket for Maria. V&

d Process 1 creates the a ticket for Pedro. W

a

o

Lock the
table

Lock the table

class Ticket(models.Model):

@classmethod
def create(cls, event_id, user_1id):
with transaction.atomic(), connection.cursor() as cursor:
cursor.execute('LOCK TABLE tickets_ticket IN EXCLUSIVE MODE;')
event = Event.objects.get(id=event_id)

if event.capacity_left ==
raise ValidationError("There is no space left.")

ticket = cls.objects.create(event_id=event_id, user_id=user_id)

event.capacity_left = event.capacity_left - 1
event.save(update_fields=["capacity_left"])

ticket.send_invoice() ‘\O\NS
return ticket
do“\‘“

Lock the
row

Lock the row

1 class Ticket(models.Model):

Z # TlelLds.

4 @classmethod

5 def create(cls, event_id, user_1id):

6 with transaction.atomic():

event = Event.objects.select_for_update().get(id=event_1id)

if event.capacity_left ==
raise ValidationError("There is no space left.")

> O 00

i C

ticket = cls.objects.create(event_id=event_id, user_id=user_id)

14 event.capacity_left = event.capacity_left - 1
15 event.save(update_fields=["capacity_left"])

ticket.send_invoice()

return ticket

You did
Pessimist
Locking

Optimist

and

Pessimist

Lock Strategies

Pessimist Strategy

d “As soon as one user starts to update a record, a lock 1is
placed on 1t.” —IBM

Optimist Strategy

class Ticket(models.Model):
version = models.PositiveIntegerField(default=0)
@classmethod
def create(cls, event_id, user_1id):

event = Event.objects.get(id=event_id)

if event.capacity_left ==
raise ValidationError("There is no space left.")

Event.objects.filter(
id=event_id,
version=event.version,
) .update(
capacity_left=event.capacity_left - 1,
version=event.version + 1,
)
ticket = cls.objects.create(event_id=event_1id, user_id=user_id)
ticket.send_invoice()

return ticket

Introduce a “version” field.
django-optimistic-lock and django-concurrency packages.

L L

https://github.com/gavinwahl/django-optimistic-lock
https://github.com/saxix/django-concurrency

One more thing,
The forgotten
locks..

A quiz?

SELECT =
FROM events_event
LIMIT 5

d AccessSharelLock (table)

Another quiz?

INSERT INTO events_event (name, capacity_left)
VALUES ('PyCon Turkey', 100);

d RowExclusivelLock (table)

13.3. Explicit Locking Documentation

(@ Home About Download Documentation Community Developers Support Donate Your account _

31st August 2023:

Documentation — PostgreSQL 15

Supported Versions: Current (15)/14/13/12/11

Development Versions: 16 / devel

Unsupported versions: 10/9.6/9.5/9.4/9.3/9.2/9.1/9.0/8.4/83/8.2/8.1/8.0
1747173

13.3. Explicit Locking
Prev Up Chapter 13. Concurrency Control Home Next

13.3. Explicit Locking

13.3.1. Table-Level Locks
13.3.2. Row-Level Locks

13.3.3. Page-Level Locks
13.3.4. Deadlocks

13.3.5. Advisory Locks

PostgreSQL provides various lock modes to control concurrent access to data in tables. These modes can be used for application-controlled locking in situations where MVCC does not give
the desired behavior. Also, most PostgreSQL commands automatically acquire locks of appropriate modes to ensure that referenced tables are not dropped or modified in incompatible
ways while the command executes. (For example, TRUNCATE cannot safely be executed concurrently with other operations on the same table, so it obtains an ACCESS EXCLUSIVE lock on
the table to enforce that.)

To examine a list of the currently outstanding locks in a database server, use the pg_locks system view. For more information on monitoring the status of the lock manager subsystem,
refer to Chapter 28.

13.3.1. Table-Level Locks

The list below shows the available lock modes and the contexts in which they are used automatically by PostgreSQL. You can also acquire any of these locks explicitly with the command
LOCK. Remember that all of these lock modes are table-level locks, even if the name contains the word “row”; the names of the lock modes are historical. To some extent the names reflect
the typical usage of each lock mode — but the semantics are all the same. The only real difference between one lock mode and another is the set of lock modes with which each conflicts
(see Table 13.2). Two transactions cannot hold locks of conflicting modes on the same table at the same time. (However, a transaction never conflicts with itself. For example, it might
acquire ACCESS EXCLUSIVE lock and later acquire ACCESS SHARE lock on the same table.) Non-conflicting lock modes can be held concurrently by many transactions. Notice in particular
that some lock modes are self-conflicting (for example, an ACCESS EXCLUSIVE lock cannot be held by more than one transaction at a time) while others are not self-conflicting (for
example, an ACCESS SHARE lock can be held by multiple transactions).

Table-Level Lock Modes

Databases
also

need lock
for themself

Table Level Locks

ACCESS SHARE

ROW SHARE

ROW EXCLUSIVE

SHARE UPDATE EXCLUSIVE
SHARE

SHARE ROW EXCLUSIVE
EXCLUSIVE

ACCESS EXCLUSIVE

HpEpERERER NN NN

Conflicts of Table Level Locks

Lock Mode ACCESS ROW SHARE ROW SHARE SHARE SHARE ROW EXCLUSIVE ACCESS

SHARE EXCLUSIVE UPDATE EXCLUSIVE EXCLUSIVE
EXCLUSIVE

ACCESS X

SHARE

ROW SHARE X X

ROW X X X X

EXCLUSIVE

SHARE X X X X X

UPDATE

EXCLUSIVE

SHARE X X X X X

SHARE ROW X X X X X X

EXCLUSIVE

EXCLUSIVE X X X X X X X

ACCESS X X X X X X X X

EXCLUSIVE

Conflicts of Table Level Locks

CLUSIVE ACCESS
EXCLUSIVE

ACCESS X
SHARE
ROW SHARE X X
ROW X X X X
EXCLUSIVE
SHARE X X X X X
UPDATE
EXCLUSIVE
SHARE X X X X X
SHARE ROW X X X X X X
EXCLUSIVE
EXCLUSIVE X X X X X X X
ACCESS X X X X X X X X
EXCLUSIVE

Row Level Locks

FOR UPDATE

FOR NO KEY UPDATE
FOR SHARE

FOR KEY SHARE

iy Ey N

Row Level Locks

Lock Mode FOR KEY SHARE FOR SHARE FOR NO KEY UPDATE FOR UPDATE
FOR KEY SHARE X
FOR SHARE X X
FOR NO KEY UPDATE X X X
FOR UPDATE X X X X

glocks.org

PostgreSQL Lock Conflicts

Databas

PostgreSQL Lock Conflicts

This tool shows all commands and locks in postgres. If you select a command, it lists the locks that it acquires, commands that conflicts with it and commands that are allowed to run concurrently with it (with no conflict or
blocking). If you select a lock, it lists commands that acquire the lock and what are the other conflicting locks.

. RowExclusiveLock (table)

4. ShareUpdateExclusiveLock (table)
. ShareLock (table)

. ShareRowE; veLock (table)
ExclusiveLock (table)

ssExclusiveLock (table)

. FORKEYSHARE (row),

. FORSHARE (ow)

. FORNOKEYUPDATE (row)
FORUPDATE (row)

A I don’t care about lock conflicts.
d I care about conflicts of SQL Commands.
d Thanks to Hussein Nasser.

Downtime on
deployments
with migration?

Commands conflicting with SELECT

VACUUM FULL

TRUNCATE

REINDEX

DROP TABLE

ALTER TABLE SET/DROP DEFAULT
ALTER TABLE RENAME

ALTER TABLE DROP CONSTRAINT
ALTER TABLE DROP COLUMN
ALTER TABLE ALTER CONSTRAINT
ALTER TABLE ADD COLUMN

ALTER TABLE ADD CONSTRAINT

Ny Ny I Iy Ny I Iy Ny WOy WOy W

Commands not conflicting with SELECT

a VACUUM

(A REINDEX CONCURRENTLY

A CREATE INDEX CONCURRENTLY
3

Downtime on
deployments
with migration?

Concurrent Migration Operations

[Django supports AddIndexConcurrently and
RemoveIndexConcurrently.

[Change AddIndex to AddIndexConcurrently in the migration
file.

QO DDL (Data Definition Language) txns -CREATE, DROP, ALTER,
TRUNCATE- don’'t support atomic. Then, Set atomic = False
in the migration file.

d Add i1ndex first concurrently, Then have another
deployment.

Auchtung!

d Don't create NOT NULL column in a deployment for large
tables.
d Don't create column with default value in large table.

Obrigado!
°

Slides are available
at efe.me

Any Question?

1

