
Peaceful Django
Migrations

Efe Öge

Hey, I’m Efe Öge

- Pronounced as “Eh-feh”
- Originally from Türkiye, based in The Netherlands
- Past: Founding engineer in early phase startups
- Now: Senior engineer @ Sendcloud 📦
- Writes at efe.me 🔗
- DjangoNL & Mentor at Django Girls Amsterdam

(previously PyCon Turkey, Python Istanbul)
- Django, Python, LLMs, Backend
- Boring Technology Advocate

1) Django migrations 101

2) What causes downtime during migrations?

3) Schema changes that cause locks

4) How to predict locks?

5) Q&A

Django (Database) Migrations 🕊
noun. A way of tracking and applying changes to your
database schema so it stays in sync with your models.

It is not about a migration,

- from PHP to Python (Django).
- from API v2 to API v3.
- from Django 4 to Django 5.
- from FastAPI to Django.
- from PostgreSQL 16 to 17.

A library 📖
case. help people find, borrow, and return books efficiently
while keeping track of the entire collection.

Every book record has title, author, genre.

$ python
manage.py makemigrations

$ python
manage.py migrate

List books
in Turkish language 💡

A library 📖
wish. I would like to list books in Turkish language.

How does Django know to
apply only the 0002
migration? 🤔

How does rails work?

- Migrations have timestamp as prefix.
- 20250101000000_create_users.rb

- Keeps in “schema_migrations” table.
- .

$ python manage.py
migrate books 0001
(to revert a migration)

Django Migrations Terminology

Django models

describe the structure of the data we keep (like title,
author for books).

Django migration files

act as a “to-do list” for the database: what needs to be
created, updated, or removed. (like add language to
books)

Django Migrations Command Cheat Sheet

- manage.py makemigrations (after updating
models.py)

- manage.py showmigrations (to see which
migrations are applied in the database)

- manage.py migrate (to apply migration files in the
database)

- manage.py sqlmigrate (to see SQL equivalence of
migration file)

Quiz:
Why are they different?

←PostgreSQL

←SQLite

SQL of the same migration
may vary by database.
(PostgreSQL, SQLite etc.)

1) Django migrations 101

2) What causes downtime during migrations?

3) Schema changes that cause locks

4) How to predict locks?

5) Q&A

😀 😂 🥰 🙂 😐 🙁 😢 😡 😱 😴
- Downtime
- Incident
- Uptime
- Outage
- Availability
- 500
- …

Downtime in Deployment 📖
noun. any period where end users cannot successfully
complete their intended actions in the application.

We are interested in the downtimes during the
deployment.

Reasons of downtime in deployment

Reason 1:

Schema version mismatch in rolling deployment

Reason 2:

A “locking” migration that takes a long time

An example rolling deployment

*https://www.ykameshrao.com/post/software-deployment-strategies-part-2-stateless-services

One database and multiple app servers

*my poor diagram

1: manage.py migrate

- The migration adds the "language" column to Book.

- But while the deploy is in progress, not all app instances
are updated yet.

2: Old app instances with old schema

- They may still create new Book objects without setting
language.

- If the column is already NOT NULL, those inserts will
fail. (book.language must be provided.)

- If it’s nullable, they may insert rows with NULL values
that the new app doesn’t expect.

3: New app instances

- They expect every Book to have a language (e.g.
"Turkish").

- But they may read rows created by old instances that
have NULL, leading to errors or unexpected behavior.

4: Mismatch window

- During the rollout, there’s a period where some app
instances speak the “old schema contract” and others
speak the “new contract”.

- This creates the temporary incompatibility between
application and database.

i) Schema version mismatch in rolling deployment

Schema Change vs. Old App Instances

The new migration adds a language column to Book. Old
app instances, still running during deployment, may insert
new rows without setting language. If the column is NOT
NULL, those inserts will fail; if it’s nullable, they may insert
NULL values that the updated code does not expect.

New App Instances vs. Existing Data

New app instances assume every Book has a valid
language. However, during the deployment mismatch
window, they may encounter NULL values from old app
writes, causing errors or unexpected behavior.

ii) A migration that takes a long time

Brief steps of deployment:

1) Detach first app from load balancer.
2) manage.py migrate (312 seconds..)
3) Deploying first app
4) Attach first app to load balancer.
5) Detach nth app from load balancer.
6) Deploying nth app
7) Attach nth app to load balancer.
8) Deployment is completed.

Apps cannot read or write to
the database table.

Reasons of downtime in deployment

i) Schema version mismatch in rolling deployment

ii) A “locking” migration that takes a long time

1) Django migrations 101

2) What causes downtime during migrations?

3) Schema changes that cause locks

4) How to predict locks?

5) Q&A

pglocks.org

pglocks.org

1) Django migrations 101

2) What causes downtime during migrations?

3) Schema changes that cause locks

4) How to predict locks?

5) Q&A

1. Adding a nullable field
creates “long” lock?

(True/False)

1. Adding a nullable field
creates “long” lock.

False.

2. Adding an index creates
“long” lock?

(True/False)

2. Adding an index creates
“long” lock?

- True, CreateIndex
- False, CreateIndexConcurrently

3. Adding a non-nullable field
with default value creates
“long” lock?

(True/False)

3. Adding a non-nullable field
with default creates “long”
lock?

- True < PostgreSQL 11
- False >= PostgreSQL 11

*if the default value
is constant
(not non-volatile such as
now, gen_random_uuid)

MENTAL
LOAD

 “sleeping in the storm”

Lessons from “Aircraft Investigation”

Prevents crashes before they happen

Airplane warning systems have cut crashes by 85% since the 1970s by alerting
pilots early.

Saves huge amounts of money

Fixing an airplane problem on the ground costs thousands; fixing it after a crash
costs billions.

Lets thousands work together smoothly

Modern aviation safely manages 100,000+ flights daily because every pilot
follows the same automated checklists.

Northwest Airlines Flight 255

Checklist skipped

Pilots forgot to set the flaps and slats—vital for takeoff—because they missed the “taxi”
checklist.

Warning system silent

Normally, an alarm would warn them, but the system had no power and never went off.

Why no power?

Investigators found a key circuit breaker (P-40) was off. It may have been silenced on
purpose during taxi to stop a nuisance alarm, but wasn’t reset. It’s unclear if this was
deliberate, a malfunction, or an oversight.

sleep in the storm,
no mental load

$ pip install
django-migration-linter

manage.py lintmigrations ✨

$ npm install squawk-cli

$ manage.py sqlmigrate books 0002 | squawk

$ manage.py squawk_migrations (djangoesque way)

https://tinyurl.com/
squawkmigrations

pgroll

creating temporary shadow columns and views during migrations,
allowing both old and new versions of your application to run
simultaneously.

pgroll setup

- pgroll init --postgres-url
postgres://user:password@host:port/dbname

deployment with pgroll

deployment with pgroll

How to predict locks?

django-migration-linter

Analyzes Django migration SQL statements using pattern matching to detect operations that
could cause table locks or backward incompatibility issues.

squawk

Parses PostgreSQL SQL files using an AST to identify DDL operations that require dangerous lock
levels and could block database reads/writes.

pgroll

prevents locks entirely by using virtual schemas and the expand/contract pattern to perform
zero-downtime migrations with automatic rollback capabilities.

An alternative to Django Migrations.

Migration is completed!
Questions?

Peaceful Django
Migrations

Efe Öge

