Peaceful Django
Migrations

“fe Oge

Hey, I'm Efe Oge

- Pronounced as “Eh-feh”

- Originally from Torkiye, based in The Netherlands

- Past: Founding engineer in early phase startups

- Now: Senior engineer @ Sendcloud @&

- Writes at efe.me ¢’

- DjangoNL & Mentor at Django Girls Amsterdam
(previously PyCon Turkey, Python Istanbul)

- Django, Python, LLMs, Backend

- Boring Technology Advocate

1) Django migrations 101
2) What causes downtime during migrations?
3) Schema changes that cause locks

4) How to predict locks?
5) Q&A

Django (Database) Migrations

noun. A way of tracking and applying changes to your
database schema so it stays in sync with your models.

It is not about a migration,

- from PHP to Python (Django).
- from API v2 to API v3.

- from Django 4 to Django 5.

- from FastAPI to Django.

- from PostgreSQL 16 to 17.

A library I8

case. help people find, borrow, and return books efficiently
while keeping track of the entire collection.

Every book record has title, author, genre.

n django.db models

Book(models.Model):
title = models.CharField(max_length=50)
author = models.CharField(max_length=100)
genre = models.CharField(max_length=50)

$ python
mMmanage.py makemigrations

$ python manage.py makemigrations
Migrations for 'books':
books/migrations/0001_initial.py
+ Create model Book

initi

migrations/000

migrations, models

rom django.db imp¢
; Migration(migrations.Migration):
initial =
dependencies = []

operations = [
migrations.CreateModel(

name="Book",
fields=[
(
Sildiy
models.BigAutoField(
auto_created=True,
primary_key=True,
serialize=False,

verbose_name="1D",
)

),
("title", models.CharField(max_length=50)),

("author", models.CharField(max_length=100)),
("genre", models.CharField(verbose_name=50)),
1]
),

-- Qutput of "python manage.py sqlmigrate books 0001" command

BEGIN;

-- Create model Book

CREATE TABLE "books_book" ("id" integer NOT NULL PRIMARY KEY AUTOINCREMENT, "title"
varchar(50) NOT NULL, "author" varchar(100) NOT NULL, "genre" varchar NOT NULL);

COMMIT;

$ python
Mmanage.py migrate

python manage.py migrate

Operations to perform:
Apply all migrations: admin, auth, books, contenttypes, sessions
Applying books.0001_initial... OK

List books
in Turkish language @

A library B8

wish. | would like to list books in Turkish language.

from django.db models

Book(models.Model)
title = models.CharField(max_length=200)
author models.CharField(max_length=100)
genre = models.CharField(max_length=50)
language - models.CharField(max_length-50)

$ python manage.py makemigrations
Migrations for 'books':
books/migrations/0002_book_language.py
+ Add field language to book

b hanke /misrmvrat+ssance /BRND hank 1an 12 A\7
books/migrations/0002_book_Llanguage.py

‘rom django.db import migrations, models

class Migration(migrations.Migration):

dependencies = [
("books", "0001_initial"),
]

operations = |
migrations.AddField(
model_name="book",
name="1language",
field=models.CharField(default="Turkish", max_length=100),
preserve_default=False,
)5

-- Qutput of "python manage.py sglmigrate books 0002" command

BEGIN;

-- Add field language to book

ALTER TABLE "books_book" ADD COLUMN "language" varchar(100) DEFAULT 'Turkish' NOT NULL;
ALTER TABLE "books_book" ALTER COLUMN "language" DROP DEFAULT;

COMMIT;

$ python manage.py migrate
Operations to perform

Apply all migrations: admin, auth, books, contenttypes, sessions
Running migrations

Applying books.0002_book_language... OK

How does Django know to
apply only the 0002
migration? &

-- Qutput of "\d django_migrations" in PostgreSQL db shell

Column | Type | Nullable | Default
________ A S s R S S Do U SO e e
id | integer | not null | nextval()
app | character varying(255) | not null |

name | character varying(255) | not null |

applied | timestamp with time zone | not null |

sqlite> SELECT * FROM django_migrations;

1| contenttypes|0001_initial|2025-09-07 19:17:41.238464
2|auth|0001_initial|2025-09-07 19:17:41.244100
3|admin|0001_initial|2025-09-07 19:17:41.247048
4]admin|0002_logentry_remove_auto_add|2025-09-07 19:17:41.249831
5|admin|0003_logentry_add_action_flag_choices|2025-09-07 19:17:41.251425
6|contenttypes|0002_remove_content_type_name|2025-09-07 19:17:41.256119
7|auth|0002_alter_permission_name_max_length|2025-09-07 19:17:41.258841
8|auth|0003_alter_user_email_max_length|2025-09-07 19:17:41.261694
9|auth|0004_alter_user_username_opts|2025-09-07 19:17:41.263493
10|auth|0005_alter_user_last_login_null|2025-09-07 19:17:41.266102
11|auth|0006_require_contenttypes_0002|2025-09-07 19:17:41.266443
12|auth|0007_alter_validators_add_error_messages|2025-09-07 19:17:41.268171
13|auth|0008_alter_user_username_max_length|2025-09-07 19:17:41.270803
14|auth|0009_alter_user_last_name_max_length|2025-09-07 19:17:41.273137
15|auth|0010_alter_group_name_max_length|2025-09-07 19:17:41.275589
16|auth|0011_update_proxy_permissions|2025-09-07 19:17:41.277564
17|auth|0012_alter_user_first_name_max_length|2025-09-07 19:17:41.281241
18| books |0001_initial|2025-09-07 19:17:41.282083

19| books |0002_book_language|2025-09-07 19:17:41.283282

20| sessions|0001_initial|2025-09-07 19:17:41.284250

$ python manage.py showmigrations
admin
[X] 0001_1initial
[X] 0002_logentry_remove_auto_add
[X] 0003_logentry_add_action_flag_choices
auth
[X] 0001_initial
[X] 0002_alter_permission_name_max_length
[X] 0003_alter_user_email_max_length
[X] 0004_alter_user_username_opts
[X] 0005_alter_user_last_login_null
[X] 0006_require_contenttypes_0002
[X] 0007_alter_validators_add_error_messages
[X] 0008_alter_user_username_max_length
[X] 0009_alter_user_last_name_max_length
[X] 0010_alter_group_name_max_length
[X] 0011_update_proxy_permissions
[X] 0012_alter_user_first_name_max_length
books
[X] 0001_1initial
[X] 0002_book_language
contenttypes
[X] 0001_1initial
[X] 0002_remove_content_type_name
sessions
[X] 0001_1initial

How does rails work?

- Migrations have timestamp as prefix.
- 20250101000000 _create_users.rb

- Keeps in “schema_migrations” table.

version

20250101000000
20250102000000
20250103000000

$ python manage.py
migrate books 0001

(to revert a migration)

$ python manage.py migrate books 0001
Operations to perform

Target specific migration: 0001_1initial, from books
Running migrations
Rendering model states... DONE

Unapplying books.0002_book_language... OK

Django Migrations Terminology

Django models

describe the structure of the data we keep (like title,
author for books).

Django migration files

act as a “to-do list” for the database: what needs to be
created, updated, or removed. (like add language to
books)

Django Migrations Command Cheat Sheet

- manage.py makemigrations (after updating
models.py)

- manage.py showmigrations (to see which
migrations are applied in the database)

- manage.py migrate (to apply migration files in the
database)

- manage.py sqglmigrate (to see SQL equivalence of
migration file)

Quiz:
Why are they different?

$ python manage.py sqlmigrate books 0002

o —PostgreSQL

"books_book" ADD COLUMN "language" varchar(100) DEFAULT 'Turkish' NOT NULL;

‘ "books_book" COLUMN "language" DEFAULT;
COMMIT;
000 .
$ python manage.py sqlmigrate books 0002 : SQI—Ite
BEGIN;

£ "new__books_book" ("id" integer NULL PRIMARY KEY AUTOINCREMENT, "language"
varchar(100) NULL, "title" varchar(50) N NULL, "author" varchar(100) NULL, "genre"
varchar(50) NOT NULL);
INS "new__books_book" ("id", "title", "author", "genre", "language") : Sids
"title", "author", "genre", 'Turkish' "books_book";

- "books_book";
"new__books_book" RENAME TO "books_book";
COMMIT;

SQL of the same migration

mMay vary by database.
(PostgreSQL, SQLite etc.)

1) Django migrations 101

2) What causes downtime during migrations?
3) Schema changes that cause locks

4) How to predict locks?

5) Q&A

OS2 000HdOHS

- Downtime
- Incident

- Uptime

- Qutage

- Availability
- 500

Downtime in Deployment H&
noun. ANY period where end users cannot successfully
complete their intended actions in the application.

We are interested in the downtimes during the
deployment.

Reasons of downtime in deployment

Reason 1

Schema version mismatch in rolling deployment

Reason 2;

A “locking” migration that takes a long time

An example rolling deployment

~

s
/ E
@] =
=
Bolancer
.

&

Users

- -®

m ~

4 |

B;::ig,s
X

J

Deployment
PL\aseS

*https://www.ykameshrao.com/post/software-deployment-strategies-part-2-stateless-services

Vv

One database and multiple app servers

(—> Django app - 1 H

User A
Database H >—> Load balancer H
(PostgreSQL,
MySQL..)
L’ Django app - 3 H
— User B
;’ Django app - 4 H

*my poor diagram

1. manage.py migrate

- The migration adds the "language” column to Book.

- But while the deploy is in progress, not all app instances
are updated yet.

2. Old app instances with old schema

- They may still create new Book objects without setting
language.

- If the column is already NOT NULL, those inserts will
fail. (book.language must be provided.)

- If it’'s nullable, they may insert rows with NULL values
that the new app doesn’t expect.

3. New app instances

- They expect every Book to have a language (e.g.
"Turkish™).

- But they may read rows created by old instances that
have NULL, leading to errors or unexpected behavior.

4: Mismatch window

- During the rollout, there’s a period where some app
instances speak the “old schema contract” and others
speak the “new contract”.

- This creates the temporary incompatibility between
application and database.

) Schema version mismatch in rolling deployment

Schema Change vs. Old App Instances

The new migration adds a language column to Book. Old
app instances, still running during deployment, may insert
new rows without setting language. If the column is NOT
NULL, those inserts will fail; if it’s nullable, they may insert

NULL values that the updated code does not expect.

New App Instances vs. Existing Data

New app instances assume every Book has a valid
language. However, during the deployment mismatch
window, they may encounter NULL values from old app
writes, causing errors or unexpected behavior.

i) A migration that takes a long time

Brief steps of deployment:

D,
2)
3)
4)
)
6)
/)
8)

Detach first app from load balancer.
manage.py migrate (312 seconds..)
Deploying first app

Attach first app to load balancer.
Detach nth app from load balancer.
Deploying nth app

Attach nth app to load balancer.
Deployment is completed.

Apps cannot read or write to
the database table.

Reasons of downtime in deployment

) Schema version mismatch in rolling deployment

i) A “locking” migration that takes a long time

1) Django migrations 101
2) What causes downtime during migrations?
3) Schema changes that cause locks

4) How to predict locks?
5) Q&A

PostgreSQL Lock Conflicts

PostgreSQL Lock Conflicts

This tool shows all commands and locks in postgres. If you select a command, it lists the locks that it acquires, commands that conflicts with it and commands that are allowed to run concurrently with it (with no conflict or blocking). If you select a lock, it lists commands tk
acquire the lock and what are the other conflicting locks.

Locks

. AccessShareLock (table),

. RowShareLock (table)
RowExclusiveLock (table)
ShareUpdateExclusiveLock (table)
ShareLock (table)

ShareRowExclusiveLock (table)
ExclusiveLock (table)
AccessExclusivelock (table)
.FORKEYSHARE (row)

. FORSHARE (row),

O ® N A R WwN

S

1

. FORNOKEYUPDATE (row),
12. FORUPDATE (row)

Commands

1. SELECT

2. SELECT FOR UPDATE

3. SELECT FOR SHARE

4. SELECT FOR NO KEY UPDATE
5. SELECT FOR KEY SHARE
6
7
8
9

glocks.org

.COPY TO
. UPDATE (NO KEYS)
. UPDATE (KEYS)

10. DELETE

11. COPY FROM

PostgreSQL Lock Conflicts

SELECT

The SELECT command acquires AccessShareLock table lock . Following are the locks SELECT acquires, the commands that are allowed to run concurrently with its lock AccessShareLock and the commands that conflict with it. The list also includes the conflicting row lo
applicable

Locks acquired by SELECT
1. AccessShareLock (table)
Commands concurrently allowed on the table with SELECT
e.g. If tx1 does a SELECT on the table then tx2 is allowed to do any of the following commands concurrently on the same table without being blocked. Some DMLs executed on the same rows may block, read more below.

1. SELECT
2. SELECT FOR UPDATE
3. SELECT FOR SHARE
.SELECT FOR NO KEY UPDATE

5. SELECT FOR KEY SHARE

. UPDATE (NO KEYS)
. UPDATE (KEYS)

10. DELETE

11. COPY FROM

12. MERGE

13. VACUUM

4
5
6. COPY TO
7
8
9

glocks.org

14. REINDEX CONCURRENTLY

15. REFRESH MATERIALIZED VIEW CONCURRENTLY
16. DROP INDEX CONCURRENTLY

17. CREATE TRIGGER

18. CREATE STATISTICS

19. CREATE INDEX

20. CREATE INDEX CONCURRENTLY

21. COMMENT ON

SELECT

AccessShareLock

LIl 1]]]

VACUUM FULL

TRUNCATE

REINDEX

REFRESH
MATERIALIZED VIE...

DROP TABLE

CLUSTER

ALTER TABLE SET/
DROP DEFAULT

24 more..

Commands

p—
[woons | [omnras | e | [| [wene | [smar | [| [| [reomyowac | [
I
C

[[] | “wememmons | [| [ooveomer | [womemmons | [comemorcmmmrns | [| [romer | [sorrms |

i

—————| — L__—

iow Locks Table Locks

e B R

i

conflicts conflicts.

contlicts canficts conflicts conticts

conficts conflicts conflicts

Aceasssharetock RowkxelusiveLock | Eonflicts cenfliets

onflicts conflicts

£ t
contlicts contlicts
H i

i

Eanfiees |

M xata Product v Open source v Pricing Blog &) 79 Log in

Anatomy of Table-Level Locks in
PostgreSQL

This blog explains locking mechanisms in PostgreSQL, focusing on table-
level locks that are required by Data Definition Language (DDL) operations.

Author Date published
Gulcin Yildirim Jelinek Jan 13, 2025

Art of locking or unlocking?

It is common to think about database locks by drawing analogies to physical locks, which might
even lead you to order books on the history of locks, Persian locks, and lock-picking techniques.
Probably most of us learn by going deeper into the term "locking" to understand a concept in
PostgreSQL that doesn’t have much to do with physical locks at all, which are primarily about
security. Postgres locks though are all about concurrency and controlling which transaction can
hold a lock while another transaction can do its thing, ideally without ever blocking each other.
But as we know, no world is ideal, whether it's a door lock or an AccessShareLock .

However, now that I've bought those said books about locks, | think | should be allowed to draw
some parallels between, let's say, the art of lock-picking and database locking mechanisms.
There is one thing | will start with: to be able to pick a lock, any type of lock, you need to have a
deep understanding of its inner workings; how the pins, tumbler, and mechanisms interact. By
manipulating them, you can find the correct position to unlock the door or safe without a key! In
the same way, to be able to manage database locks, you need to understand the internal

workings of a database, and mainly how concurrency works in Postgres.

1) Django migrations 101

2) What causes downtime during migrations?
3) Schema changes that cause locks

4) How to predict locks?

5) Q&A

1. Adding a nullable field
creates “long” lock?

(True/False)

1. Adding a nullable field
creates “long” lock.

-alse.

2. Adding an index creates
“long” lock?

(True/False)

2. Adding an index creates
“long” lock?

- True, Createlndex
- False, CreatelndexConcurrently

3. Adding a non-nullable field
with default value creates
“long” lock?

(True/False)

E.23.3.2. Base Backup And Streaming Replication
* Replicate TRUNCATE activity when using logical replication (Simon Riggs, Marco Nenciarini, Peter Eisentraut)
* Pass prepared transaction information to logical replication subscribers (Nikhil Sontakke, Stas Kelvich)
¢ Exclude unlogged tables, temporary tables, and pg_internal. init files from streaming base backups (David Steele)
There is no need to copy such files.
* Allow checksums of heap pages to be verified during streaming base backup (Michael Banck)
* Allow replication slots to be advanced programmatically, rather than be consumed by subscribers (Petr Jelinek)
This allows efficient advancement of replication slots when the contents do not need to be consumed. This is performed by pg_replication_slot_advance().
¢ Add timeline information to the backup_label file (Michael Paquier)
Also add a check that the WAL timeline matches the backup_label file's timeline.
¢ Add host and port connection information to the pg_stat_wal_receiver system view (Haribabu Kommi)
E.23.3.3. Utility Commands
» Allow ALTER TABLE to add a column with a non-null default without doing a table rewrite (Andrew Dunstan, Serge Rielau)
This is enabled when the default value is a constant.
¢ Allow views to be locked by locking the underlying tables (Yugo Nagata)
* Allow ALTER INDEX to set statistics-gathering targets for expression indexes (Alexander Korotkov, Adrien Nayrat)
In psql, \d+ now shows the statistics target for indexes.
¢ Allow multiple tables to be specified in one VACUUM or ANALYZE command (Nathan Bossart)
Also, if any table mentioned in VACUUM uses a column list, then the ANALYZE keyword must be supplied; previously, ANALYZE was implied in such cases.
¢ Add parenthesized options syntax to ANALYZE (Nathan Bossart)
This is similar to the syntax supported by VACUUM.
* Add CREATE AGGREGATE option to specify the behavior of the aggregate's finalization function (Tom Lane)
This is helpful for allowing user-defined aggregate functions to be optimized and to work as window functions.
E.23.3.4. Data Types

 Allow the creation of arrays of domains (Tom Lane)

= O postgres / postgres

<> Code {9 Pullrequests () Actions () Security [~ Insights

Commit 16828d5

€% adunstan committed on Mar 27, 2018

Fast ALTER TABLE ADD COLUMN with a non-NULL default

Currently adding a column to a table with a non-NULL default results in
a rewrite of the table. For large tables this can be both expensive and
disruptive. This patch removes the need for the rewrite as long as the
default value is not volatile. The default expression is evaluated at
the time of the ALTER TABLE and the result stored in a new column
(attmissingval) in pg_attribute, and a new column (atthasmissing) is set
to true. Any existing row when fetched will be supplied with the
attmissingval. New rows will have the supplied value or the default and
so will never need the attmissingval.

Any time the table is rewritten all the atthasmissing and attmissingval
settings for the attributes are cleared, as they are no longer needed.

The most visible code change from this is in heap_attisnull, which
acquires a third TupleDesc argument, allowing it to detect a missing
value if there is one. In many cases where it is known that there will
not be any (e.g. catalog relations) NULL can be passed for this
argument.

Andrew Dunstan, heavily modified from an original patch from Serge
Rielau.
Reviewed by Tom Lane, Andres Freund, Tomas Vondra and David Rowley.

Discussion: https://postgr.es/m/31e2e921-7002-4c27-59f5-51108404c858@2ndQuadrant. com

master - © REL_18_RC1 *++ REL_11_BETA1

Q = [l 36files changed +1898 -244 lines changed

v [doc/src/sgml v doc/src/sgml/catalogs.sgml LC,I 3

cteas sl 4 @@ -1149,6 +1149,19 @@
v [ref 1149 1149 </entry>
alter_table.sgml 1350 1150 </row>
1151 1151
~ . are 11528 + <row>

v [@ backend 1153 + <entry><structfield>atthasmissing</structfield></entry>

Q Type [7] to search

[+ ~][o]n]|lea] @

<9 Browse files

1 parent ef1978d commit 16828d5 L[;

+27 @@

3. Adding a non-nullable field
with default creates “long”
lock?™?

- True < PostgreSQL 11
- False >= PostgreSQL 11

“if the default value
IS constant

(not non-volatile such as
now, gen_random _uuid)

MEN TAL
L OAD

& < it

i
| S NATIONAL
. GEOGRAPHIC
2 %
3 ; AIR gRASH
- -

_ INVESTIGATION &

17

. S g >
o . g) e

Lessons from “Aircraft Investigation”

Prevents crashes before they happen

Airplane warning systems have cut crashes by 85% since the 1970s by alerting
pilots early.

Saves huge amounts of money

Fixing an airplane problem on the ground costs thousands; fixing it after a crash
costs billions.

Lets thousands work together smoothly

Modern aviation safely manages 100,000+ flights daily because every pilot
follows the same automated checklists.

Northwest Airlines Flight 255

Checklist skipped

Pilots forgot to set the flaps and slats—vital for takeoff—because they missed the “taxi”
checklist.

Warning system silent
Normally, an alarm would warn them, but the system had no power and never went off.
Why no power?

Investigators found a key circuit breaker (P-40) was off. It may have been silenced on
purpose during taxi to stop a nuisance alarm, but wasn’t reset. It’s unclear if this was
deliberate, a malfunction, or an oversight.

sleep in the storm,
no mental load

j 3YOURMIND / django-migration-linter

e (© Issues 18

%7 django-migration-linter pubiic

¥ main ~

@) dependabot[bot] and David-Wobrock Bump actions/setup-python from .. e

i1 Pullrequests 4

.github

docs

B src/django_migration_linter

[I e R e R v R e I = I = N e I |

3

tests

.codecov.yml|

.gitignore

.pre-commit-config.yaml|

CHANGELOG.md

LICENSE

MANIFEST.in

README.md

manage.py

pyproject.toml

tox.ini

README 58 Anache-2 0 licence

¥ 17 Branches © 40 Tags

(® Actions () Security |~ Insights

Q Go tofile t

Bump actions/setup-python from 5 to 6

Allow ignoring initial migrations

Support apps with custom label.

Support apps with custom label.

Add codecov coverage

Add .DS_Store to .gitignore

chore: update pre-commit hook versions
chore: add support for Django 5.2

Update LICENSE

Migrate from setup.py and setup.cfg to pyproject.tom|
Remove codecov integration.

Add internal classes and add type hints + mypy.
chore: add support for Django 5.2

chore: add support for Django 5.2

8c8a0c6 - 6 hours ago

& Watch 10

6 hours ago

6 months ago

5 months ago

5 months ago

4 years ago

2 years ago

6 months ago

5 months ago

8 years ago

2 years ago

last year

3 years ago

5 months ago

5 months ago

-

0 498 Commits

Q. Type (/] to search

%’ Fork 66 -

About

Detect backward incompatible
migrations for your django project

@ pypi.python.org/pypi/django-migratio...

mysql python django database

migrations linter postgresql

Readme
Apache-2.0 license
Activity

Custom properties
567 stars

10 watching

< O 0 < B

66 forks

Report repository

Releases 38

© s20

on Mar 30

+ 37 releases

Packages

No packages published

Y%y Star 567 &

+ -

7

$ pip install
django-migration-linter

manage.py lintmigrations

) @
$ python manage.py lintmigrations

(app_add_not_null_column, 0001 create_table)... OK

(app_add_not_null_column, 0002_add_new_not_null_field)...

NOT NULL on columns
(app_drop_table, 0001_)... OK
(app_drop_table, 0002 _delete_a)... ERR
DROPPING
(app_ignore_migration, 0001)... OK
(app_ignore_migration, 0002 _ignore_migration)... IGNORE
(app_rename_table, 0001_)... OK
(app_rename_table, 0002 _auto_20190414_1500)... ERR
RENAMING tables

Summary
Valid migrations: 4/8
Erroneous migrations: 3/8
Migrations warnings: 0/8
Ignored migrations: 1/8

$ npm install squawk-cli

$ manage.py sglmigrate books 0002 | squawk

$ python manage.py sqlmigrate books 0002 | squawk
warning[prefer-text-field]: Changing the size of a “varchar field requires an "ACCESS
EXCLUSIVE"® lock, that will prevent all reads writes to the

"books_book" ADD COLUMN "language" varchar(100) DEFAULT 'Turkish'

help: Use a TEXT field with a "CHECK constraint.

Find detailed examples solutions for each rule at https://squawkhq.com/docs/rules
Found 1 issue 1 file (checked 1 source file)

$ manage.py squawk_migrations (djangoesque way)

$ python manage.py squawk_migrations

Found 1 unapplied migration(s): books.0002_book_language

- Linting books.0002_book_language with Squawk. ..

CommandError: Squawk found 1issues : books.0002_book_language (exit 1)
warning[prefer-text-field]: Changing the size of a “varchar® field requires an “ACCESS
EXCLUSIVE" lock, that will prevent all reads writes to the

5 “books_book" ADD COLUMN "language" varchar(100) DEFAULT 'Turkish'

I

I
NULL;

|

|

= help: Use a "TEXT field with a "CHECK® constraint.

Find detailed examples solutions for each rule at https://squawkhq.com/docs/rules
Found 1 issue 1 file (checked 1 source file)

https://tinyurl.com/
squawkmigrations

pogroll

creating temporary shadow columns and views during migrations,
allowing both old and new versions of your application to run
simultaneously.

ogroll setup

- pgroll init --postgres-url
postgres://user:password@host:port/dbname

PGROLL_SCHEMA = os.environ.get('PGROLL_SCHEMA', 'public')

DATABASES = {
‘default': {

"OPTIONS': {
‘options': f'-c search_path={PGROLL_SCHEMA},public'

deployment with pgroll

$ python manage.py sqlmigrate books 0002 | pgroll convert -name books_0002. json

$ pgroll --postgres-url postgres://user:password@host:port/dbname start books_0002.json

i
"schema": "public_pgroll_20250809_books_0002"

}

PGROLL_SCHEMA = "public_pgroll_20250809_books_0002"

PGROLL_SCHEMA = "public_pgroll_20250809_books_0002"

PGROLL_SCHEMA = "public"

$ pgroll --postgres-url postgres://user:password@host:port/dbname complete

deployment with pgroll

Schema changes flow

Schema change starts New schema ready Schema change completed
L] L]
& Database

old version available

active migration period

i
i

new version available
i

EE App/Clients

using old schema
roll out
using new schema

o
New version deploy

Active migration period

old version view %% Migration operations

Users ;
« Rename column fullname -> firstname

id s . » Add column lastname

o Applya NOT NULL constraintto age column

fullname b
age - - "__L__"____“_: physical schema

3 ; % Users

ffffffffffff fffffffffff id text

. . 3 ; ------------ ; ---------- > fullname text
new version view : : ;

Userxs § ; E """"""""" > age integer
id ° s > _pgroll_new_age_notnull integer
firstname . :'”’> _pgroll_new_lastname text
lastname -

age Pomtt s e

Migration complete

® Old schema removed

physical schema

Users
fffffffffffff > | id text
T SR b > firstname text
new version view ;
Users ‘ e > age integer
id ST G e > lastname text
firstname o 1o
lastname - -omemmemceecemmend !

age B--mmmm-emmmmmeeee oo

How to predict locks?

django-migration-linter

Analyzes Django migration SQL statements using pattern matching to detect operations that
could cause table locks or backward incompatibility issues.

squawk

Parses PostgreSQL SQL files using an AST to identify DDL operations that require dangerous lock
levels and could block database reads/writes.

pgroll

prevents locks entirely by using virtual schemas and the expand/contract pattern to perform
zero-downtime migrations with automatic rollback capabilities.

An alternative to Django Migrations.

4 ' L , | e\ i“:_;

Migration is completed!

Peaceful Django
Migrations

“fe Oge

